
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3114

SPECIAL ISSUE PAPER

PAR-3D-BLAST: A parallel tool for searching and aligning
protein structures

Ahmad Salah 1,2,3 and Kenli Li 1,3,*,†

1College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
2Computer Science Department, College of Computers and Informatics, Zagazig University, Zagazig, Egypt

3The National Supercomputing Center in Changsha, Hunan University, Changsha, Hunan, China

SUMMARY

Protein structure comparison is a vital process in several tasks like the prediction of protein structures and
functions and detecting the proteins evolutionary relationships. The expansion of both the parallel compu-
tational hardware and the discovered protein structures stimulates the growth of the parallel computational
tools to handle this massive data of proteome. Here, we present a parallel tool, parallel 3D-BLAST (PAR-
3D-BLAST), which lists the similar structures to the query protein. Each protein in the result list has a
structural similarity score and an alignment to the query structure. The presented tool is implemented to fit
both the standalone multi-core computers and clusters of multi-core nodes. The achieved speedup is linear
and scalable. The experimental results outline that the speedup increases as the size of the database increases.
Using a cluster of 35 computing cores, the tool constructs the database of the entire structural classification
of proteins dataset, 108,116 protein entries, in less than 6 min and with average query time of 1.45 s. The
obtained speed up is 20 times for database construction and 17 times for searching the query. The tool is an
open source and free to use, distribute, and share; it is available at http://aca.hnu.cn/par3dblast. Copyright
© 2013 John Wiley & Sons, Ltd.

Received 25 February 2013; Revised 2 July 2013; Accepted 19 July 2013

KEY WORDS: protein structure; structure searching; structure alignment; parallel algorithm; multi-core

1. INTRODUCTION

Because the comparison of enzyme structures binding site is introduced in [1], there were successive
advancements in the field of computational structure biology. At the core of this field, protein struc-
ture comparison, or alignment, is a vital problem. Solving this problem is a mandatory process in
several tasks like drug discovery and design [2], revealing the evolutionary relationship of proteins
[3] and predicting protein folding [4]. Into the bargain, the protein structure comparison is used to
predict the protein functions, as the structure is linked to protein functions [5].

The protein structure consists of a chain of linked atoms in the three-dimensional (3D) space.
Each atom presents an amino acid, which is the building block of the protein. The fold of this chain
presents the shape of the protein that matches the functions performed by the protein.

The protein structure data is maintained by several repositories. The Protein Data Bank (PDB) is
the largest repository that receives the submitted protein structural data from biologists all over
the world [6]. At further level, these structural data of proteins are classified manually, using
protein domains as the classification unit, at structural classification of proteins (SCOP) database

*Correspondence to: Kenli Li, College of Information Science and Engineering, Hunan University, Changsha, Hunan,
China, 410082.

†E-mail: lkl@hnu.edu.cn

Copyright © 2013 John Wiley & Sons, Ltd.



A. SALAH AND K. LI

[7] or semi-automatically as in classification, architecture, topology, and homologous superfamily
levels (CATH) [8]. These classified databases are useful to judge the accuracy of the computational
tools, which perform the structure comparison, because proteins belong to the same class have
similar structures.

The classification of the methods proposed to tackle this problem can be classified by different
points. The first point depends on the alignment type; whether the alignment is local or global as
detailed in [9]. The local structure alignment concerns on similar regions of different proteins, and
it is useful for the dissimilar structures. In contrast, the global structure alignment concerns on the
similarity of proteins as a whole.

Another point of classification is the similarity metrics, distances between proteins. While the
majority of the pioneers’ methods based on the root-mean-square-deviation, the recent statistical
methods are based on the geodesic distance from a particular Riemannian metric [10].

The third point of classification is the representation of the protein structure. Several methods
are based on the usage of graphs to present the protein structures as proposed in [11, 12] and [13].
In these methods, the graph contains nodes representing the secondary structure elements and the
edges for their spatial relationship. Another category of methods is based on the structure geomet-
ric. The method represents the structures using the distance between C-alpha atoms as in [14] or
the distance and angles between protein residues as in [15] and [16], where C-alpha is a kind of
protein atoms.

The steady growth of the computational power like multi-core, clusters, and cloud computing sys-
tems, beside, the exponential increase of the proteomic data stimulates the development of parallel
version of the previous sequential tools. These tools should be able to work on the various parallel
environments, from multi-core standalone workstations to a cluster of nodes.

In the rest of the paper, we discuss the main available protein structure databases and methods
to tackle the protein structure comparison in Section 2. In Section 3, we explain the methodology
of the proposed tool. We discuss the experiments and analyze the results in Section 4. Finally, we
conclude the work in Section 5.

2. RELATED WORK

In this section, we discuss the main repositories and algorithms, which side by side tackle the pro-
tein structure comparison problem. While there are several repositories and algorithms, we focus
only on the ones with significant importance in the meantime.

The Protein Data Bank, managed and maintained by research collaboratory for structural bioin-
formatics, is a widely used database for protein secondary structure, which store the records of
the 3D structure of the atoms and amino acids that build the protein. Each protein is presented by
a file of data for both sequence and structure [6]. Figure 1 shows the exponential growth of the
number of available proteins in PDB. Structural classification of proteins database is a classified
version of PDB. Scientists manually, by visual inspection, classify the data in the PDB files. Sci-
entists hierarchically classify protein structures into four levels; these levels, from the lowest to the
highest, are domains, families, super-families and folds [7]. SCOP utilizes four levels of hierarchical
classification of structures, which are the following:

(i) Class: General “structural architecture” of the domain.
(ii) Fold: Similar arrangement of regular secondary structures but without evidence of evolu-

tionary relatedness.
(iii) Super-family: Similar in structure and function but not necessarily similar in sequence. It is

used to infer the evolutionary relationship.
(iv) Family: Some sequence similarity can be detected.

Figure 2 shows the growth of the last three levels of SCOP per release, the first level is constant and
it currently contains 7 items.

The CATH, for class, architecture, topology and homologous, database presents a classifica-
tion scheme similar to that of SCOP. In CATH, proteins with highly similar structures, sequences,
and functions are grouped into sequence families. A homologous super-family contains proteins
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Figure 1. Protein Data Bank growth since year 2000.

Figure 2. Structural classification of proteins growth by release.

in the form of sequence and structure. A topology or fold family comprises sets of homologous
super-families that share the spatial arrangement and connectivity of helices and strands of sheet.
Architecture is a classification of proteins based on the similar arrangements of helices and sheets
but with dissimilar connectivity [8].

In the following, we discuss the main methods that used the presented databases. Distance matrix
alignment represents each structure by a two-dimensional matrix of inter-residual, C-alpha-C-alpha,
distances [17]. Similar structures should have similar distance matrices, which are used to find the
optimal superposition of the matrices. A parallel version is proposed in [14].

Combinatorial extension (CE)represents proteins as a vector of C-alpha distances for each eight
consecutive residues in the structure. Each pair of vectors fragments with distance below a prede-
fined threshold is considered an aligned fragment pair, and then CE employs the CE algorithm to
identify and combine the closest aligned fragment pairs between the compared structures [18].

Sequential structure alignment program is based on double dynamic programming to find the opti-
mal structure alignment. It consists of two phases. The first phase constructs a matrix of distances
for the entire residues of the protein. This matrix is constructed by using dynamic programming for
each possible pair of the compared structures. The second phase uses the dynamic programming to
form the alignment by aggregating the matrices obtained in the previous phase [19].

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe



A. SALAH AND K. LI

Protein structure indexing using suffix trees is a fast and scalable method proposed in [15]. The
method represents the protein structure as a vector of both the distance and angle, torsion angles,
of residues. This representation is the rotation and translation invariants. The obtained vectors are
then indexed using the suffix tree structure [20]. The process of comparing structures is reduced to
searching the suffix tree, which is a linear and simple process. Matching molecular models obtained
from theory is an accurate, recent method [21]. It represents the structure as a set of vector; each
of size six. The proposed method consists of three steps. In the first step, the similarity matrix is
established by using the optimal superposing of the unit-vectors for the compared structures, using
the unit-vector root mean square. In a second step, the dynamic programming algorithm finds the
optimal path in the similarity matrix. In the last step, it uses a heuristic to identify the largest local
structure similarity for a given root-mean-square-deviation threshold.

Laplacian norm alignment is a recent method [22]. The representation of protein is performed over
two phases. In the first phase, a graph corresponding to the residues adjacency matrix is represented.
In the second phase, the feature values are evaluated by performing the Laplacian operator on the
obtained graph at the previous phase. At the comparison step, the authors present two algorithms;
one is based on the local similarity meanwhile the other is based on the global.

The SALIGN is a unique and flexible method, because it permits the user to define the prop-
erties that represents the structure [23]. First, the method computes the dissimilarity matrix of the
compared structures. The dissimilarity score is computed by a weighted sum of the properties rep-
resenting the proteins. Second and similar to matching molecular models obtained from theory,
dynamic programming is used to find the optimal alignment that is presented by the optimal path in
the matrix.

The 3D-BLAST is a fast and accurate method; it is as fast as BLAST. Firstly, the method defines
23 states of the structural alphabet. This alphabet represents the protein backbone fragments pattern
profiles. The representation of the structure is formed from these predefined states. The database of
known protein structures is constructed using this representation, which is finally considered struc-
tural alphabet sequence databases (SADB). Finally, for any given structure, the SADB is searched,
using BLAST, in order to find the longest common substructures. The method provides the statistical
significance (E-value) of the alignment to measure the quality of the output [24].

In this work, we propose a massively parallel tool based on the 3D-BLAST algorithm, which is
presented in [24]. The selection of the 3D-BLAST is built upon a compromise between how fast
and how accurate is the selected algorithm. 3D-BLAST is as fast as the famous BLAST for protein
sequence comparison [25]. The proposed tool implements two different algorithms for two different
levels of parallelism. The first level targets the multi-core parallel architectures, and the second level
targets the multi-node parallel architectures.

3. THE METHODOLOGY

In this section, we present two algorithms that target two different levels of parallelism. While the
first algorithm is designed to benefit from the multi-core architecture, the second can be used on a
cluster or on grid architectures. The following two sub-sections are dedicated for explaining these
two algorithms.

3.1. Multi-core 3D-BLAST algorithm

The main goal of this algorithm is to speed up the 3D-BLAST using the available CPU(s) cores. The
3D-BLAST treats each database entry separately; it compares the query entry against the database
entry and assigns a similarity score. Finally, it displays out the top N scores. In the proposed algo-
rithm, we realize the massive database of the entire protein entries into p small databases sum up
to the complete database. Then, we apply the sequential 3D-BLAST tool for each portion using a
single core. In the last step, we merge the output results of the entire portions and sort the results
by score. We just need to divide the database, launch the p instances of the 3D-BLAST and merge
the output files; there is no need to modify the code of the 3D-BLAST. The algorithm is listed in
algorithm 1.
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Algorithm 1 Multi-core 3D-BLAST
mc3D-BLAST(D, p, Q)
D is the protein database
p is the number of cores
Q is a set of query protein(s)

1. Split D into p portions of equal number of proteins.
2. In parallel, each core execute the sequential 3D-BLAST given one portion of D and the entire
Q.

3. Collect and merge the output files of all the p cores.
4. Sort and display the highest score matched proteins for each query.

The first step is sequential, and it can be performed in linear time. The second step depends on the
3D-BLAST complexity time. The third and fourth steps are computational trivial tasks with almost
constant time for a small number of p parts to be merged and sorted. The proposed algorithm time
complexity is as 3D-BLAST, because it is the main bulk of the algorithm.

3.2. Multi-node 3D-BLAST algorithm

Because the harness of the multi-core architecture is not enough to handle the large-scale proteomic
data, so we extend the tool’s abilities to be able to work on any massively parallel environment. We
design the tool based on the client server architecture. The 3D-BLAST is configured on the entire
nodes of the used cluster or grid, and one node will operate as the server to collect, merge, and sort
the results. Finally, the server node will forward the top similar protein structures to the end user.
Algorithm 2, beside Figure 3, explains the steps of the proposed tool.

First, algorithm 2 divides, distributes, and constructs the database for set D of the entire known
proteins as shown in step 1. Each node is assigned m=p proteins, where m is the number of the
known proteins in the database, and p is the number of client nodes. The construction of the
distributed database consists in the following three steps:

Figure 3. Client-server architecture for the inter-workstation parallel strategy.
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Algorithm 2 Multi-node 3D-BLAST
mn3D-BLAST(D, N , p, m)
D is the set of all known proteins
N is the set of all nodes
p is the number of nodes
m is the number of proteins in set D

1. Server load the list of nodes
2. In parallel, For i D 0 to p � 1 do

i. Node N.i C 1/: diC1 D d.i�m=p/C1, ...., d..iC1/�m=p/ 2D
ii. Node N.i C 1/ divides the received diC1 into k portions, where k represents the number of

cores at that node.
iii. Use the protein files to construct the SADB database file for each core.

3. Repeat
4. Server receives the query protein(s) q from the user.
5. Server sends q 8n 2N .
6. 8n 2N performs algorithm 1.
7. 8n 2N this node has set R which contains the output of algorithm 2.
8. 8n 2N send set R to the server.
9. Server merges all sets R received from all node into GR set.

10. Server sorts GR set elements by their scores.
11. Server forward the top scored proteins , out of GR set, to the user.
12. Until (true)

(i) In the first step, the database entries are divided over all the available nodes.
(ii) In the second step, each node divides the assigned portion of proteins database to smaller por-

tions in size, and then assigns the obtained smaller portions one for each core. The number
of portions depends on the number of available cores.

(iii) In the last step, the algorithm builds the SADB database for the given proteins.

The algorithm repeats steps 3 through 10 each time the system received a new query. In step 3,
the server is ready to receive a protein, or set of proteins, to serve as the query protein(s). The server
broadcast the received protein(s) to the client nodes as listed in step 4. In step 5, all of the nodes
perform the actual protein structure comparisons between the query protein(s) and the portion of
protein stored in the SADB database file using algorithm 2. In step 6, each node should return a set
of proteins with the highest structural similarity score along with their scores, where the number of
retrieved proteins is user defined. In step 8, the server merges the received sets in on set GR, and
then sorts the element of this grand set by proteins scores, as in step 9. Finally, in step 10, the server
sends the top scored proteins of set GR, which represents the most structurally similar proteins to
the query protein.

3.3. PAR-3D-BLAST usage

The proposed tool follows 3D-BLAST license. It is an open source, free to use, distribute and
modify. The PAR-3D-BLAST tool uses the original 3D-BLAST as a black-box without any code
modification. We harnessed the strategy used in [26]. It, in parallel, runs any sequential program for
multiple sequence alignment as a black-box on a multi-core architecture. We extended this strategy
to additionally support a cluster of computers.

In contrast with 3D-BLAST, PAR-3D-BLAST has a GUI for ease of use. The user can use the
tool in two modes multi-core or local area network. The former is used on a standalone machine
with multi-core CPU, with the ability to set the number of the used cores. The latter is used on the
local area network of nodes; user has to set the Internet Protocol addresses (IPs) and the number of
used cores at each node. After describing the computational resources and for the first use, user has
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to set the database to operate locally for the former or to distribute the database for the latter. After
setting the database, user can select the query to perform the actual comparison. Finally, user has to
set the command to run the original 3D-BLAST; thus, the tool is independent of the 3D-BLAST tool
and user can tune and use all the available options of the original sequential 3D-BLAST. Database
and query files should be in the format of PDB, SCOP (.ent), or Definition of Secondary Structure
of Proteins (DSSP) files.

After feeding all the required inputs, the tool launches and manages a number of instances of the
sequential 3D-BLAST equals to the overall used number of cores. Then, the tool receives the output
files of each instance, merge the results, and displays the top N similar structures as the user set the
maximum number of hits. The outputs are text files, which contain a list of database proteins with
the top structural similarity to the query protein. Each protein in the list contains a similarity score
and an alignment to the query protein.

4. EXPERIMENTS DESIGN AND ANALYSIS

We evaluate the proposed tool by two types of experiments; each part is dedicated to one of the
discussed algorithms. In our experiments, we use a two different size datasets based on the SCOP
database. Proteins share structural relationships are classified into four different classes. The SCOP
dataset provides classified data that can be used to evaluate the accuracy of the proposed algorithms.

4.1. Multi-core speedup evaluation

The experiments at the multi-core level are performed on 2.3 GHz AMD Opteron processor 6134
(AMD, Sunnyvale, California, USA), 8 GB random access memory and two CPUs each contains
eight cores. The running operating system is Linux kernel version 3.4.6-2.10-desktop, 64 bits. All
the algorithms are written in Java language, using Java development kit version 1.6.0 33.

In all of the proposed test cases, we used the standalone 3D-BLAST Linux beta version 102.
We used the default parameter values, which are 50 for the maximum number of hit structures, and
10 for the E-value parameters. These parameters values have no effect on the obtained speedup.
The speedup comes from simultaneously comparing different portions of the database instead of
sequentially comparing the database as a whole. Thus, we used fixed values for the parameters.

In order to test the gained speedup of the multi-core algorithm, we used a well known test and
a newly designed test. Firstly, we have used the classic dataset proposed in [27]; we refer to this
dataset by protdex and it contains 34,055 entries. For the second experiment, we used the entire
latest release, to the date it is 1.75, of SCOP dataset. We constructed the query list by searching
the whole SCOP dataset for super-families, which contains at least ten members, and selected one
member of each super-family to create the query list. The dataset contains 108,116 entries, where the
original SCOP 110,799, but 3D-BLAST cannot handle 2,683 entries because of several conditions
(i.e., file with less than five residues).

Figure 4 shows the gained speedup of constructing the two databases. In SCOP database, the
number of entries for 14 cores is 7,722 entries for each core, which results in a speedup of 13 times.
On the other hand, we gain speedup of ten times for 2,432 entries in the protdex dataset.

Figure 5 shows the gained speedup of the query time for the two databases. The result expresses
an obvious fact that the more the size of dataset and used cores, the more the speedup we can gain.
SCOP dataset is almost three times in size as protdex size. The speed of SCOP is almost optimal,
while the speedup of protdex is linear but not close of the optimal due to the small size of the
dataset. Figure 6 shows the average query time for the tested datasets. The entire SCOP database
can be searched within less than 2 s using a standalone machine with 14 cores.

4.2. Multi-node speedup evaluation

The experiments of multi-node level are performed on a cluster of one server and five workstations,
all of the same specifications like the one mentioned in the multi-core test, except each workstation
contains one CPU of eight cores. We use seven cores out of each workstation and keep one core for
operating system purposes. We tested only the SCOP dataset.
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Figure 4. Database construction speedup.

Figure 5. Query time speedup.

Figure 6. Average query time per second for different number of cores.

Using five nodes (clients) and the entire SCOP dataset, the algorithm can construct the database
in 305 s on average, and the average query time is 1.45 s. The speed up of the query searching is less
than the database construction because the former includes some network traffic.

In the sake of accuracy, we compared the results of the multi-core and multi-node algorithms, and
we found they have the same output. Into the bargain, we obtained the precision-and-recall values
of 3D-BLAST for our suggested query list of SCOP, which is listed in Table I. The table contains
the precision for the family and super-family SCOP classification for different recall values. For
example, if the results contain 100 structures, then the first ten structures have an average of 8.8
correct and 1.2 fault structures for the super-family dataset.
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Table I. Precision-recall values for the structural classification of proteins
query list.

Recall (%) Super-family average precision (%) Family average precision (%)

10 88 91
20 78 82
30 68 72
40 60 65
50 54 58
60 47 51
70 41 44
80 37 40
90 31 33
100 24 27

5. CONCLUSIONS AND FUTURE DIRECTIONS

The steady growth of the proteomic data requires the development of faster algorithms for protein
structure comparison. We have presented a parallel tool PAR-3D-BLAST based on the accurate
3D-BLAST protein structure comparison algorithm. The tool can benefit from different types of
parallelism from standalone machine with multi-core to clusters or clouds of heterogeneous com-
puters. The tool can search the entire SCOP dataset in less than 2 s for standalone machine using
14 cores, achieving 13 times speedup. In addition, the tool can process a query on average time in
less than 1.5 s using a cluster of five nodes with 35 computing nodes, achieving 17 times speedup.
For the mentioned standalone machine and cluster, the tool speed up the database construction by
13 and 20 times, respectively.

For future work, we plan to test the proposed tool on Tianhe-1 supercomputer of heterogeneous
CPUs–graphics processing unit(s), it has a theoretical peak speed of 1.37 petaflops, and the cloud
systems. In addition, we will test other databases besides the SCOP database.
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