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AlphaFold2 and its applications in the fields of biology and
medicine
Zhenyu Yang1, Xiaoxi Zeng1✉, Yi Zhao 1,2✉ and Runsheng Chen1,3,4✉

AlphaFold2 (AF2) is an artificial intelligence (AI) system developed by DeepMind that can predict three-dimensional (3D) structures
of proteins from amino acid sequences with atomic-level accuracy. Protein structure prediction is one of the most challenging
problems in computational biology and chemistry, and has puzzled scientists for 50 years. The advent of AF2 presents an
unprecedented progress in protein structure prediction and has attracted much attention. Subsequent release of structures of more
than 200 million proteins predicted by AF2 further aroused great enthusiasm in the science community, especially in the fields of
biology and medicine. AF2 is thought to have a significant impact on structural biology and research areas that need protein
structure information, such as drug discovery, protein design, prediction of protein function, et al. Though the time is not long since
AF2 was developed, there are already quite a few application studies of AF2 in the fields of biology and medicine, with many of
them having preliminarily proved the potential of AF2. To better understand AF2 and promote its applications, we will in this article
summarize the principle and system architecture of AF2 as well as the recipe of its success, and particularly focus on reviewing its
applications in the fields of biology and medicine. Limitations of current AF2 prediction will also be discussed.
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INTRODUCTION
In December of 2020, AlphaFold2 (AF2),1 a machine-learning
based model to predict protein structures developed by
DeepMind, won the championship in the 14th Critical Assessment
of Structure prediction (CASP14).2 One and a half years later,
DeepMind and the EMBL’s European Bioinformatics Institute
(EMBL-EBI) released structures of more than 200 million proteins
predicted by AF2,3 which cover almost all the known proteins on
the planet (protein universe). These two events have drawn great
attention to AF2 in the science community. AF2 represents a
milestone advance in protein structure prediction. It is considered
as the greatest contribution of artificial intelligence (AI) to the
scientific field and one of the most important scientific break-
throughs made by mankind in the 21st century. This is a very
remarkable historical achievement in the human understanding of
nature. The high appraisal to AF2 is not excessive because
understanding the three-dimensional (3D) structures of proteins is
one of the most challenging issues in the field of biology, which
has puzzled scientists for 50 years.4 Although multiple technologies
including nuclear magnetic resonance (NMR),5 X-ray crystallogra-
phy,6 and cryo-electron microscopy (cryo-EM)7 have been adopted
to solve the protein structures, only about 200,000 proteins’
structures have been determined (https://www.rcsb.org/), covering
less than 0.1% of the protein universe.
AF2 is expected to have a significant influence on the fields of

biology and medicine, and may change the way we do related
researches such as structural biology, drug discovery, protein
design, etc. Despite that the time is short since AF2 was

developed, there are already many studies related to AF2
reported. To better understand AF2 and promote its applications,
we will in this review paper summarize the algorithm and working
principle of AF2 and recipe of its success, particularly focus on
reviewing its applications in the fields of biology and medicine.
Limitations of current AF2 prediction will also be discussed. The
remaining part of this paper is organized as follows. We will firstly
give a brief introduction to the protein structure prediction,
followed by analyzing the principle and architecture of AF2 and
the secret of its success. Then we will summarize the applications
of AF2 in the fields of biology and medicine, and discuss
limitations of current AF2 prediction. It will end in concluding
remarks.

A brief introduction to the protein structure prediction
In 1961, Anfinsen8 raised the famous thermodynamic hypothesis
of protein folding (“Anfinsen’s dogma”) that a protein’s native
structure stands for a free energy minimum determined by its
amino acid sequence, or in other words, the 3D structure of a
protein is only determined by its amino acid sequence. This
hypothesis is the theoretical foundation of protein structure
prediction. Since then, people began to look for algorithms to
directly predict 3D structures of proteins from amino acid
sequences. In the field of protein structure prediction, CASP,
founded in 1994, is a milestone event.9–11 This competition is held
every two years. The CASP committee publishes the “target
sequences” globally, for which the experimental structures are
known but not yet released. Each participant team that registers
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for the competition will predict and submit structures of proteins
corresponding to the “target sequences” by using their own
algorithm within a specified period. Finally, the CASP committee
will assess their predicted structures by comparing with those
experimentally solved. The competition is double blinded:
participants have no access to the experimental structures and
referees do not know who make the submissions. Because of the
objectivity and fairness, the CASP competition has a very high
reputation in structural biology and computational biology
communities.
Until now, many algorithms for protein structure prediction

have been reported and readers can refer to several recent review
papers.12–17 Despite vastly different, they can be roughly grouped
into three major classes: homology modeling, de novo modeling,
and machine learning (ML) -based modeling.
(1) Homology modeling
Homology modeling, also known as comparative modeling or

template-based modeling, is based on the hypothesis that
proteins’ 3D structures are more conserved than their amino acid
sequences, and that therefore similar amino acid sequences
should have similar 3D structures.18,19 The homology modeling
method mainly uses two techniques: sequence alignment and
molecular modeling. The basic workflow of homology modeling is
as follows: Given a target amino acid sequence, the first step is to
look for its homologous sequences from structure-known protein
databases, followed by sequence alignment. Then, coordinates of
amino acids of the structure-known homologous proteins are
taken as the coordinates of the corresponding amino acids of the
target protein. Subsequently, molecular modeling is performed to
relax the unfavorable interactions between amino acid pairs.
Finally, the generated 3D structure is evaluated.
The homology modeling method is the most popular approach

decades ago.19–24 Advantages of the homology modeling include
simple algorithm, fast prediction speed, and high accuracy for
proteins that have structure-known homologs. The defect is that it
strongly depends on the template structures, which means that it
cannot predict structures of proteins whose homologs’ structures
have not been determined.25

(2) De novo modeling
De novo modeling is a protein structure prediction method

based on the “first principles”.26 Unlike the homology modeling,
the de novo modeling does not depend on the known protein
structures, but generating the 3D structure of a target protein only
based on the established laws of physics (quantum mechanics). In
brief, a de novo modeling method conducts conformation search
guided by a designed energy function with the atomic
coordinates of amino acids as variables. Many possible conforma-
tions are produced in this process and that with the lowest energy
is picked. Obviously, the de novo modeling method depends on
two factors: (1) an energy function that represents the free energy
of target protein with respect to the atomic coordinates of amino
acids; (2) an effective conformational search algorithm that can
quickly identify low energy states.
There are many investigations regarding protein structure

prediction based on de novo modeling.27–33 The advantages of
de novo modeling include: (1) it does not rely on the known
protein structures, which means that it is able to predict protein
structures where no any prior structural knowledge exists; (2) it
has the possibility of finding new protein structural types.
Nevertheless, this method faces two major obstacles. The first
one is the free energy function. Theoretically, accurate calculation
of free energy needs to solve the Schrödinger’s equation, which
requires huge amount of calculation that we cannot afford even
now. Therefore, empirical formulae have to be used. Currently, a
majority of empirical formulae are based on molecular mechanics
or Newtonian mechanics. The second one is the conformational
space of protein, which is an astronomical number. The possible
conformational number of a protein with several hundred amino

acids is estimated to be about 10300.34 Although great progresses
have been made in conformational search algorithms, as well as
computing power and storage space, de novo modeling is still
only applicable to small proteins with the number of amino acid
residues ranging from 10 to 80.
(3) ML-based modeling
ML-based modeling is a strategy that utilizes ML algorithms and

known protein structures to predict the structures of target
proteins. Despite many ML algorithms, the most noteworthy is
deep learning (DL). DL has achieved rapid development in recent
years, which was driven by the fast growing of data volume (“big
data”), a large increase in computing power (e.g., GPU, TPU, etc.)
and the continuous optimization of DL algorithms (e.g., Recurrent
Neural Networks,35 Convolutional Neural Networks,36 Generative
Adversarial Networks,37 Transformer,38 etc.). DL has demonstrated
its great power in computer vision,39 natural language proces-
sing,40 auto-driving,41 and other fields.42–46 Recently, DL has also
been applied to the protein structure prediction.12 At present,
there are many modeling methods based on DL, among which
AlphaFold,1,47 RoseTTAFold,48 ESMFold49 (ESMFold also offers an
extensive database of protein structural predictions, which include
617 million metagenomic protein structures) and the recent
language model by Chowdhury et al.50 are the most famous ones.
Compared with homology modeling and de novo modeling,

the DL-based method is a data-driving approach and is the latest
emerging one. Due to the great success of DL in other fields, the
DL-based protein prediction approach is expected to have a better
performance. Indeed, the DL-based method lived up to people’s
expectation and won the champion of CASP1351 and 14.2

Particularly, AF2 in CASP14 could predict the structures of proteins
with atomic-level accuracy. Figure 1a summarizes the trend of
performance denoted as the backbone accuracy for the best
models obtained in each CASP.52 Here the backbone accuracy is
measured by the Global Distance Test (GDT_TS)53 value, which is a
multi-scale metric to indicate the proximity of the Cα atoms in a
model to those in the corresponding structure determined by
experiments. The GDT_TS values were calculated respectively
according to proteins with different target difficulties: “easy”,
“medium”, and “difficult”; an “easy” target implies a protein whose
structure is easy to be predicted, for example, a well-folded
protein with no loop and structures of its highly homologous
proteins being available, while a “difficult” target implies a protein
whose structure is difficult to be predicted, for example, a protein
with some un-folded domains or many loops, and structures of its
homologous proteins being not available. As shown in Fig. 1a, the
“easy” proteins can be predicted accurately in CASP1 - CASP14
with GDT_TS values around or larger than 80%. However, for the
“medium” and “difficult” proteins, the prediction accuracies were
significantly improved only in CASP13 and CASP14. Especially,
the GDT_TS values for the “medium” and “difficult” proteins have
reached more than 85% in CASP14, largely due to the contribution
of AF2; Fig. 1b shows a comparison of the GDT_TS values with or
without AF2 prediction included in CASP14. We will elaborate the
principle and architecture of AF2 as well as the secret of AF2’
success in the next section.

Principle and architecture of AF2 and secrets of AF2’ success
AF2 is the most advanced protein structure prediction method of
DeepMind. Its principle is based on the state-of-the-art DL
algorithms as well as the conservation of protein structures in
evolution. It uses a new end-to-end deep neural network which is
trained to generate protein structures from amino acid sequences,
by utilizing information of homologous proteins and multiple
sequence alignments.
In AF2, some new DL algorithms developed recently are used, of

which attention mechanism-based transformer38 plays a critical
role in improving AF2’s performance. Transformer is a newly
emerging deep neural network, which applies the self-attention
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mechanism to obtain intrinsic features and displays great
potential of broad applications in AI. Transformer38 was first
applied in the area of natural language processing (NLP). It is
composed of an encoder module and a decoder module with
several transformer blocks of the same architecture. Each
transformer block is composed of a multi-head attention layer, a
feed-forward neural network, shortcut connection and layer
normalization.
The conservation of protein structure in evolution is the

biological principle behind AF2. A protein is often conservative
in evolution, and the evolution is mostly neutral, which means that
most of the mutations don’t affect the protein function. More
importantly, protein structure is more conservative than its amino
acid sequence. Typically, for example, for a sequence that change
by 80% between distant species, the 3D structure may remain
almost the same. Conservation of a position in alignment usually
implies its importance for protein folding or function. Co-evolution
of two amino acid residues of a protein often implies interaction
between those amino acids. This information has been used as the
basis for 3D structure prediction in AF2.
AF2 adopts an architecture that is completely different from

that of previous DL models, including AlphaFold1.47 A detailed
description for the architecture of AF2 can be found in reference.1

Here we present an overview to the architecture and work
principle of AF2. As shown in Fig. 2, the pipeline of AF2 includes
three modules.

1. The first one is the input module. Given an amino acid
sequence, AF2 finds its homologs in sequence databases
and conducts MSA by aligning the input sequence and its
homolog sequences. AF2 also checks whether any of the
homologs has a 3D structure available in protein structure
databases, and constructs a pairwise distance matrix
between amino acids. Then AF2 generates MSA representa-
tion and pair representation. It should be noted that,

although both AF2 and homology modeling use MSA, AF2
extracts and utilizes the co-evolution information from the
MSA, but homology modeling does not. Intuitively, when
two residues (A and B) are spatially near to each other in the
folded structure, the mutations of residue A may provoke a
selective pressure for residue B to mutate. Such co-
evolutionary information54 detected in MSAs has been
utilized to assist the protein structure prediction in AF2.
It is necessary to mention that AF2 uses many high-

quality protein sequence databases, including Uniref90,55

Uniclust30,56 MGnify57 and BFD (Big Fantastic Database);1

BFD is a database constructed by the team themselves.
Pertaining to the structure databases used for training and
as templates, it adopts PDB and PDB7058 respectively. AF2
also utilizes several efficient search algorithms, including
JackHMMER59 and HHBlits60 for genetic searching, and
HHSearch61 for template searching.

2. The second one is the Evoformer module, which is likely an
encoder. In this module, AF2 takes the inputs (MSA
representation and pair representation) from the first
module and passes them through a deep learning module
(called Evoformer). Evoformer produces processed MSA
representation and pair representation. The key benefit of
using Evoformer blocks is that they are able to switch
information between MSA representation and pair repre-
sentation: the MSA information can be reinterpreted as the
pairwise information is improved, and in the similar way, the
pairwise information can be further improved as the MSA
information is reinterpreted.
The Evoformer contains 48 blocks with weights not

shared. Each block has two inputs: an MSA representation
and a pair representation. The outputs from each Evoformer
block are an updated MSA representation and an updated
pair representation (Fig. 2b). The MSA representation and
pair representation are processed with several layers. The

Fig. 1 Performances of protein structure prediction indicated as backbone agreement with that of structures determined by experiments for
the best models in CASPs. a The trend of performance (denotated by GDT_TS values) with regard to the backbone accuracy for best models
obtained in each CASP. b A comparison of the GDT_TS values with or without AF2 prediction included in CASP14. Prediction accuracies for
proteins with different target difficulty (“easy”, “medium” and “difficult”) are presented in indicated colors (blue, gold and green, respectively)
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Dropout approach is also used, which is commonly used for
alleviating the problem of overfitting.
Each Evoformer block (Fig. 2b) contains two pathways of

transformer-based layers and two “communication chan-
nels” between the two pathways. The first pathway of
transformer-based layers acts on the MSA. It computes
attention over a large matrix of protein symbols. To reduce
computational cost, the MSA attention is factorized in row-
wise gated self-attention and column-wise gated self-
attention components. The row-wise gated self-attention
mechanism, allowing the network to identify which pairs of
amino acids are more related, constructs attention weights
for amino acid pairs. It also combines the information from

the input pair representation, and this information can be
considered as an extra term. The column-wise gated self-
attention, allowing the network to determine which
sequences are more informative, enables the components
which belong to the same target amino acid to process
information exchange. After the row-wise gated self-
attention and column-wise gated self-attention steps, the
MSA pathway has an MSA transition layer which includes a
2-layer MLP. This trick enhances the attention mechanism
and allows it to pinpoint interacting pairs of amino acids.
The second pathway of transformer-based layers acts on

the pair representation. The key feature of this network is
that attention is arranged in terms of triangles of residues,

Fig. 2 Schematic work principle and architecture of AF2. a The overall architecture of AF2. The pipeline of AF2 contains three modules. The
first one is the input module, which takes an amino acid sequence as input, and generates the MSA representation and the pair
representation. The second one is the Evoformer module, which takes the MSA representation and the pair representation from the first
module and passes them through the deep learning module, Evoformer. The third one is the structure module, which achieves the transition
from abstract representation of protein structure to 3D atom coordinates of target protein. b Components of a block in Evoformer. Evoformer
contains 48 blocks with weights not shared. The MSA representation and the pair representation are renewed through each block.
c Components of a block in the structure module. Structure module contains 8 blocks with shared weights. Single representation and
backbone frames are updated through each block of the structure module
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which is based on the straightforward principle that in a
triangle, any two edges can affect the third edge. The
intuition here is to enforce the triangle equivariance. As
shown in Fig. 2b, the first two rounds of update are
triangular multiplicative updates, which are based on non-
attention method. Each of the “outgoing” and “incoming”
edges obtains an update from another two edges of all the
triangles where the edge is included. The second two
rounds of update are triangular self-attention. They update
the pair representation in the Evoformer block. Two versions
are also involved: “starting node” version and “ending node”
version. The “starting node” version renews the edge based
on all the edges which has the same starting node. The
“ending node” version operates the similar way, but it works
on the edges which share the same ending node instead.
Pairwise representation pathway also contains a transition
layer after the triangular self-attention layers, which works
the same way as the transition layer introduced above.

3. The third one is the structure module, likely a decoder. The
structure module also uses a transformer neural network. It
achieves the transition from abstract representation of
protein structure to 3D atom coordinates of target proteins.
The structure module takes each residue as a separate
object and predicts the rotations and translations required
to place it.

The structure module has three input elements. The first one is
the single representation containing the abstract information of
the target sequence. It is a linear projection of the MSA
representation’s first row. The second one is the pair representa-
tion output from the Evoformer module. Backbone frames serve as
an additional input. Each residue is represented as a triangle,
where its vertex next to obtuse angle is Cα atom, and two other
vertices are N atom of amino group and C atom of carbonic acid
group. The backbone frames, which are the main part of the
system prediction, are formed with triangles of the whole amino
acid sequence. At the beginning of the structure module, all the
backbone frames are placed at the same point in the same
orientation. The structural module’s output is the 3D coordinates
of all the protein atoms.
The structure module has 8 blocks with shared weight. Each

block (Fig. 2c) updates the single representation and the
backbone frames. The critical component of each block is
the Invariant Point Attention (IPA), which is a geometry-aware
attention mechanism used for updating the single representa-
tion. The final attention values of the IPA operation are 3D
equivariant, which means that they are invariant to global rigid
motion including rotations and translations. After the proces-
sing of the IPA operation, the module block predicts relative
rotations and translations of each backbone frame. The
utilization of these operations enables the overall attention
and process equivariantly on the backbone frames. In the next
step, the structure module block predicts the side-chain χ
angles and computes all atom positions using the updated
single representation from IPA and the renewed backbone
frames. However, the final output might not meet all the
stereochemical constraints. For this reason, AF2 applies Amber
relaxation to resolve the violations and clashes without
harmfully impact the prediction accuracy. OpenMM62 with
Amber99sb force field63 is used for the process.
Finally, AF2 adopts recycling mechanism for three times to

process iterative refinement of training and testing; the recycling
mechanism has been broadly utilized in computer vision, which
allows the network to be deeper and to process multiple versions
of the input features without significantly increasing the quantity
of parameters or training time. In each recycling, the model
incorporates the previous outputs as additional inputs. AF2
recycles the predicted backbone atom coordinates from the

structure module, the output pair representations and the first row
of MSA representations from the Evoformer.
AF2 has achieved the best performance compared to previous

models. Although we have presented the principle and architec-
ture of AF2, the secret of AF2’ success is not explicitly indicated.
Here, we present our analysis on the most critical points leading to
the success of AF2. From the technological point of view, it is
indisputable that the delicate algorithms used are the major
causes. Of the most importance is the use of attention
mechanism-based transformer. In AF2, several types of attention
mechanisms are used, with each one focusing on a specific aspect
for the model to learn. In the encoder part, AF2 uses two groups of
transformers which are intertwined with each other: one mainly
operates on the raw MSA and the other one mainly operates on
pairwise information, which update each other through specific
information channels between them. The MSA row-wise gated
self-attention allows the model to capture long-range dependen-
cies in amino acid sequences and protein structures. The MSA
column-wise gated self-attention is a kind of ‘conservation-aware’
attention mechanism, which lets the elements exchange informa-
tion among species. The triangular self-attention module in the
decoder enables the model to learn geometric restrictions within
the protein molecules. In the decoder part, AF2 also employs a
transformer to geometrically encode residues as a cloud of
oriented reference frames in 3D space.
The training method is also a factor which makes AF2 success.

The designers utilized the idea of self-distillation.64 They used a
combination of PDB and a new self-distillation unlabeled data set
of predicted protein structures as the training data to train AF2,
among which, 25% of the training example comes from the
known structures in PDB while 75% of data was from the new self-
distillation data set. The aim is to make AF2 recap the protein
structures predicted previously challenging by using different
training data augmentation methods. This integration data set
approach makes use of the data predicted by AF2 and largely
improves the performance of the model.
Other algorithms or tricks that may contribute to the success of

AF2 include the use of recycling approach, end-to-end framework
for learning from protein data, and so on. Moreover, big data of
amino acid sequences and structures also contribute a lot to AF2’s
success. The complete sequence library and sufficient number of
single domain protein structures allow deep learning neural
networks to explore various dependencies in protein sequence
and structure, which could be another important intrinsic cause
for the success of AF2.

Applications of AF2 in the fields of biology and medicine
The excellent performance of protein structure prediction by AF2
and the release of structures of more than 200 million proteins are
reshaping structural biology, and hence will profoundly impact
the fields of biology and medicine that require protein structural
information. AF2 and its predicted protein structures will enable
researchers to have more opportunity to solve problems that are
previously thought to be highly challenging. We will in the follows
review the progress of applications of AF2 in the fields of biology
and medicine. These applications are classified into eight
categories: structural biology, drug discovery, protein design,
target prediction, protein function prediction, protein-protein
interaction, biological mechanism of action, and others (Fig. 3).

Structural biology. Undoubtedly, structural biology is the most
impacted area by AF2.65 Rather than saying that AF2 may make
structural biologists unemployed, we prefer to the viewpoint that
the AF2 and its predicted structures will change the way we do
structural biology, including X-ray crystallography, cryo-EM, and
NMR spectroscopy. Firstly, predicted structures could be utilized as
templates for molecular replacement in solving X-ray crystal
structures, implying that traditional selenomethionine phasing is
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almost not necessary.66,67 Secondly, these predicted structures
may also be helpful for structure determination of large protein
assemblies by cryo-EM, which usually needs structures of the
component proteins or their domains as a starting point for fitting
to the cryo-EM densities. Thirdly, one could also benefit from the
predicted structures in using NMR to solve protein structures.68,69

Typically, the de novo structure determination of domains or
proteins using NMR, which is time-consuming, may be replaced by
the AF2 structures. Therefore, the application of AF2 prediction
allows to make full use of the advantages of NMR in studying
protein folding and dynamics.
Currently there are already many successful applications in this

respect. For example, Hu et al.70 utilized X-ray crystallography and
AF2 prediction to determine the structure of the VP8* domain
(VP8*B) of VP4, which is a spike protein, in group B rotaviruses. In
this study, the authors expressed and purified the VP8*B protein.
Then they obtained the crystals of this protein and received
diffraction data of X-ray. In the process of solving the 3D structure
of this protein, instead of using the traditional selenomethionine
phasing method, they used AF2 to generate a suitable search
model for molecular replacement. The results showed that the
AF2 predicted structure almost perfectly matched the diffraction
density. Besides the overall fold, AF2 also successfully predicted
the orientation of sidechain with high accuracy, which is very close
to that determined by experiments. Of note is that they found a
novel fold mode by AF2, which has never been reported in
homology proteins.
Hutin et al.71 recently revealed a structure of the vaccinia virus

DNA helicase, the helicase-primase D5, by utilizing combined cryo-
EM and AF2 prediction. The obtained structure of D5 shows an
AAA+ helicase core, which is flanked by N- as well as C-terminal
domains. The structure of D5 predicted by AF2 largely helped the
construction of the model. The N-terminal domain, which has a
3.9 Å resolution, forms a well-defined tight ring, while the
resolution decreases towards the C-terminus, which still allows
the fit of the predicted structure. This structure validates AF2

calculations of a large number of structures of viral helicase
associated with D5. Jin et al.72 solved the structure of interleukin
(IL) −27 signal complex by using cryo-EM with the aid of AF2
prediction, through which they revealed a new mechanism for the
assembly and activation of IL-27 receptor recognition complex.
Skalidis et al.73 utilized cryo-EM and AF2 to characterize
metabolon-embedded architectures of a 60S pre-ribosome, fatty
acid synthase, and pyruvate/oxoglutarate dehydrogenase com-
plex E2 cores. Though cryo-EM 3D reconstructions were resolved
at resolution ranging from 3.84 to 4.52 Å by collecting less than
3,000 micrographs of a single cellular fraction, AF2 enabled
polypeptide hydrogen bonding patterns discernible at this
resolution range. These results proposed an integrated approach,
powered by ML, which enables the cryo-EM characterization of
native cell extracts.
Fowler and Williamson68 recently evaluated the accuracy of

NMR structures and AF2 prediction. They used the program
Accuracy of NMR Structures Using RCI and Rigidity (ANSURR),
which calculates a protein structure’s local rigidity.74 They
compared AF2 predicted structures and those determined by
NMR and found that AF2 tends to be more accurate than NMR
ensembles. They also found that the NMR ensembles are more
accurate in some cases, which tend to be dynamic structures,
where AF2 had low confidence. They finally suggested that AF2
could be utilized as the model for refining NMR-structure.
There are also some other similar studies in which AF2 is

applied to help structural determination, and some of which
combines AF2 and experimental methods to verify if the protein
structure is solved correctly, for example, combining AF2 with
X-ray crystallography,75,76 cryo-EM,77–79 NMR,80 and multiple
methods.81–85

Besides structure determination, AF2 prediction can even be
applied to the design of expression constructs. They enable
researchers to better determine where the starting and ending
points of a domain locate in the sequence, and avoid less ordered
regions;86 Neglecting less ordered regions from protein sequences

Fig. 3 Application areas of AF2 in the fields of biology and medicine. AF2 can be applied in many areas of biology and medicine, including
structural biology, drug discovery, protein design, protein-protein interaction, target prediction, protein function prediction, biological
mechanism of action, and others (such as protein evolution, rare disease treatment studies, effects of mutation on treatment, vaccine design
and so on)
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is often conducive to designing recombinant proteins for
investigations pertaining to structures.

Drug discovery. Drug discovery is one of the major application
areas that require protein structure information. Although the
confidence level of prediction varies, the AF2 predicted structures
still could considerably promote the structure-based drug
discovery, especially against protein targets with limited or no
structural information. At present, protein structures used in
structure-based drug discovery mainly come from the RCSB
Protein Data Bank (PDB). However, the number of protein
structures in the PDB database are quite limited, which is far
from meeting the current vigorous demand for drug discovery.
The structures’ release of the entire protein universe is expected to
accelerate existing and new drug discovery projects.
Zhang et al.87 recently used Glide,88 a molecular docking

program, to benchmark the performance of virtual screening
towards 28 common drug targets, each with a known experi-
mental structure and an AF2 structure. The AF2 structures show
comparable performance with experimental structures in terms of
the enrichment factor, especially when flexible docking was used.
The results clearly show that AF2 structures can completely
replace the experimental structures in virtual screening.
Ren et al.89 applied AF2 in their end-to-end AI-powered drug

discovery engines, which include a biocomputational platform
named PandaOmics and a generative chemistry platform named
Chemistry42.90 PandaOmics provides the targets of interest and
Chemistry42 is responsible for generating molecules based on the
AF2 predicted structures, and the selected molecules are then
synthesized and tested in biological assays. Through this
approach, they discovered a small molecule hit compound for
CDK20 (Cyclin-dependent Kinase 20)91 with a Kd value of
8.9 ± 1.6 μM within 30 days from target selection and after only
synthesizing 7 compounds. This compound was the first small
molecule targeting CDK20 at that time, and this work is the first
demonstration of AF2’s successful application in the early drug
discovery process.
Weng et al.92 applied AF2 to predict the 3D structure of WSB1

(SOCS-box-containing WD-40 protein), a new potential anticancer
target93–95 with 3D structural information not available. The
predicted structure was then optimized by molecular dynamics
simulations. The optimized 3D structure of WSB1 was taken as the
receptor structure to perform molecular docking to screen for
WSB1 inhibitors. Finally, they obtained a number of potential
active compounds. Among these compounds, G490-0341 dis-
played the best stable structure and deserved further research and
development.
Liang et al.96 identified JMJD897–99 as a novel oncogene

correlated with immunosuppression and DNA repair by
bioinformatics analysis. Then they used AF2 to predict the 3D
structure of JMJD8 and performed virtual screening to retrieve
JMJD8 inhibitors. Liu et al.100 proposed a multi-target drug
discovery method and applied this method to drug discovery of
therapeutic hypothermia.101 In this study, they first predicted
the structure for all related protein targets by using AF2 and
RoseTTAFold. After that, they applied molecular docking to
estimate the interaction between proteins and drugs, and
determined optimal single drugs or drug combinations.
Considering the differences in the weights of different protein
targets, the approach could refrain from inhibiting beneficial
proteins effectively while inhibiting harmful proteins.
Except for the above examples, some researches also showed

that the side chain quality modeled by AF2 is not good enough
for drug discovery, and some recent studies also found that the
docking test based on AF2-predicted structures showed weak
enrichment performance.102,103

Other researches with AF2 applied in drug discovery include
the literature.104–106

Protein design. Design of proteins means creating novel proteins
with desired structures and functions. De novo protein design is a
longstanding fundamental goal of synthetic biology.107–109 It is a
complex and challenging task, which is mainly hindered by the
difficulty in reliable prediction of protein 3D structures from amino
acid sequences. AF2 as well as other machine learning algorithms
(such as RoseTTAFold and recent language models49,50) likely
removes this obstacle. It is no exaggeration to say that with AF2
prediction, we will step into a new era of protein design. Some
typical protein design examples by using AF2 are given as follows.
Jendrusch et al110 developed a computational framework for de

novo protein design that embeds AF2 as an oracle within an
optimizable design process. This is an adaptable framework for
protein design through sequence optimization utilizing evolu-
tionary algorithms. It extends previous studies towards protein
design by leveraging structure predictors.111,112 The integrity of
the structures predicted is validated and confirmed by standard
ab initio folding, protein structure analysis methods, and rigorous
all-atom molecular dynamics simulations. They also showed a
potential application of their method in designing de novo protein
monomers, dimers and oligomers, as well as protein binders for
target proteins and proteins which change conformation upon
complex formation.
Goverde et al.113 designed a pipeline for de novo protein design

based on AF2. In the beginning, they just inverted the AF2 model,
utilizing a loss function and the prediction weight set to bias the
generated sequences for the objective of adopting a target fold.
However, as observed in the protein surface’s hydrophilic versus
hydrophobic patterning, the approach does not seem to fully capture
basic principles of de novo protein design. Then they made
modifications to their pipeline system with minimal post-design
intervention, and conducted in vitro validation, which demonstrated
that some designs were folded and stable in solution in the condition
of high melting temperatures. Overall, the revised pipeline generated
viable sequences as assessed experimental characterization, showing
the possibility of contributing to solving outstanding challenges in
the field of de novo protein design.
Other interesting studies with AF2 assisting protein design include

the literature.114–117 It is also necessary to mention that, relative to
AF2, RoseTTAFold has more applications in protein design, largely
due to Baker’s groundbreaking work.118–120

Target prediction. Target prediction, including on-target and off-
target identifications, are important not only for understanding
physiological and pathological processes, but also for identifying
novel drug targets and evaluating selectivity of drugs. Experi-
mental approaches to target identification, such as various
activity-based protein profiling (ABPP)-based methods,121–124 are
often expensive and time consuming. Computer-aided target
prediction may help narrow the scope of target identification,
which is often based on protein-ligand docking, usually called
inverse docking. Previously, the inverse docking faces a challenge
of lacking 3D structures of all possible protein targets. The
AF2 structures provide an unprecedented opportunity to develop
feasible target prediction methods.
Wang et al.125 utilized the AF2 structures to construct the first

pocket library for all the proteins in the human proteome, called
the CavitySpace database. CavitySpace can be applied to identify
novel targets for known drugs in drug repurposing or side effect
researches. This database can be easily used to the target
prediction by inverse docking. The building workflow of database
is as follows: they collected 23,391 human proteins from
AlphaFold protein structure database and 6956 human reference
proteins from PDB. Then, they applied CAVITY, a tool developed
by the same research group to detect all the possible cavities on
protein surfaces,126 to identify all the potential cavities on protein
surfaces. The CavitySpace database is freely available at http://
www.pkumdl.cn:8000/cavityspace/.
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There are also other related studies applied AF2 for target
prediction.127–129

Protein function prediction. Currently, there are still many
proteins whose functions are not known or poorly understood.
Since 3D structures of proteins completely determine their
functionality, this characteristic can be utilized to establish data-
driven prediction models of protein function. Nevertheless, the
insufficient number of available protein structures severely limits
the performance of these models. The structures predicted by AF2
have provided a promising solution towards this problem, and are
expected to improve the performance of these models via
increasing the amount of training samples.
Ma et al.130 recently conducted a comprehensive study to

investigate whether AF2-predicted structures could enhance the
protein function prediction performance. In this study, they
proposed a state-of-the-art structure-based protein function
prediction approach and constructed a new benchmark data
set. After that, they evaluated whether the performance of the
protein function prediction model could be improved by putting
additional protein structures predicted by AF2 into the training
data set. They further compared the performance differences
between two models separately trained with structures predicted
by AF2 only and with real protein structures only. Their results
demonstrated that protein function prediction models based on
structures could benefit from virtual training data composed of
structures predicted by AF2. Even, the model trained only using
the structures predicted by AF2 achieved comparable perfor-
mances to the model based on real protein structures, which are
solved through experiments. This indicates that the structures
predicted by AF2 were almost equally effective in protein function
prediction.
Hu et al.131 explored the utility of the Protein Language Models

(PLMs) module in AF2, Evoformer, in protein function prediction,
and particularly compared the performance of evolution-based &
evolution-free protein language models as protein function
predictors. They showed that evolution-based PLMs performed
better than evolution-free models only in the structure prediction
tasks, but in general, were worse than evolution-free models in
most function prediction tasks. Consistent with structure predic-
tion, evolution-based PLMs are also sensitive to the amount of
MSAs when predicting protein function.
Interpretable and compact structural feature representations

are important for accurate prediction of protein properties and
function. In a recent study, Rappoport and Jinich132 constructed
and evaluated 3D feature representations of protein structures
using space-filling curves, in which AF2 predicted protein
structures were used. In this study, two enzyme substrate
predictions were used as case studies: the S-adenosylmethionine
dependent methyltransferases (SAM-MTases) and the short-chain
dehydrogenase/reductases (SDRs). As their results demonstrate,
enzymatic function could be predicted from feature representa-
tions on the basis of the 3D structures of SAM-MTAses and SDRs
with good accuracy.
By searching proteins that contain Zα domain (experimentally

validated Z-DNA/Z-RNA133 binding protein domain) from AF2
predicted structure database, Bartas et al.134 identified 185
proteins with a putative Zα domain, which may bind to Z-DNA/
Z-RNA and play an important role in a variety of cellular processes.
There are also other interesting researches related to protein

function prediction involving AF2.135,136

Protein–protein interaction. Protein-protein interaction (PPI)
refers to the process in which two or more protein molecules
form a protein complex through non-covalent bonds.137,138 A
majority of proteins need to recruit other proteins through PPI to
form protein complexes to perform their functions. Understanding
the structure of interacting proteins is a fundamental step towards

revealing the protein function and mechanism. However, there is
lack of computational tools that can produce accurate structures
of protein complexes. The emergence of AF2 can be greatly
conducive to this area.
Evans et al.139 extended AF2 to the prediction of multiple-chain

complex, and the system was named as AlphaFold-Multimer. On a
benchmark data set of 17 heterodimer proteins without tem-
plates, they achieved at least medium accuracy on 14 targets and
high accuracy on 6 targets. They also predicted structures for a
large data set containing more than 4,000 recent protein
complexes, from which they scored all the non-redundant
interfaces with low template identity from these protein
complexes. For heteromeric interfaces, they successfully predicted
the interface in 67% of the cases, and 23% of the cases were
predicted with high accuracy. For homomeric interfaces they
effectively predicted the interface in 69% of cases, and produced
high accuracy predictions in 34% of cases. All these results
demonstrated superior performance compared to existing
approaches. The AlphaFold2-multimers has now been used to
predict protein-protein complex structures. For example, Gómez-
Marín et al.140 applied AlphaFold-multimer for the prediction of
PHF14-HMG20A complex models. Ivanov et al.141 also applied
AlphaFold-multimer to predict the homodimers structure of
CYP102A1.
Recently, Bryant et al.142 applied AF2 to predict heterodimeric

protein complexes. In this work, they explored the docking effect
by using the AF2 pipeline combined with different input MSAs,
which is for studying the relationship between the output model
quality and these inputs. Through scoring multiple PPI models
with a predicted DockQ score (pDockQ), they could distinguish
from incorrect models with high confidence acceptable
(pDockQ >= 0.23). They concluded that AF2-based docking out-
performed another docking method.143

Yin et al.144 examined the performance of AF2 in predicting
structures of protein complexes from amino acid sequence. They
used 152 diverse heterodimeric protein complexes to form a
benchmark test data set. In this test, 43% of cases that had near-
native models were produced as top ranking prediction results by
AF2, substantially outperforming the performance of unbound
protein–protein docking method (9%). To examine the effect of
AlphaFold_Multimer in predicting antibody–antigen interaction,
the authors used a set of antibody-antigen structures, which were
released recently. The testing results confirmed a low success rate
for the modeling of antibody–antigen complexes. They further
observed that, via the algorithm, T cell receptor–antigen
complexes are similarly not accurately modeled. These findings
demonstrate that AF2 faces challenges in handling the adaptive
immune recognition. Gao et al.145 developed an AF2-based
system called AF2Complex, which can predict direct physical
interactions in multimeric proteins. Contrary to normal
approaches, paired MSAs are not necessary for AF2Complex. It
improves significantly over AlpahFold-Multimer and reaches
higher accuracy compared to some complex protein-protein
docking approaches. Moreover, the authors introduced metrics
used for direct protein-protein interactions prediction between
arbitrary pairs of proteins and validate AF2Complex on the E. coli
proteome as well as some challenging benchmark sets.
In addition to PPI, AF2 can also been used in the prediction of

peptide-protein interactions. For example, Tsaban et al.146 sug-
gested an AF2-based strategy to model peptide-protein complex
which did not require MSA information for the peptide partner. In
this way, binding-induced conformational changes of the receptor
could be handled. The outcomes demonstrate that AF2 could be
expected to provide structural insight into a broad range of
peptide-protein complexes.
For some similar investigations related to protein-protein

interaction or protein-peptide interaction by using AF2, readers
can see the literature.147–153
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Biological mechanism of action. Exploring biological mechanism
of action is often complicated and remains a challenge. Studies of
biological mechanism of action include many aspects, such as
drug-target interaction mode, mechanism of biological enzyme
catalysis, and so on.
In silico molecular docking methods have been broadly applied

to the prediction of drug-target interaction. Nevertheless, this kind
of methods strongly rely on existing protein structures. AF2
provides alternative approach to retrieval of accurate protein
structures. Wong et al.102 combined molecular docking simula-
tions with AF2 for protein-ligand interactions prediction. They
successfully predicted the interactions between 296 proteins
spanning the essential proteome of Escherichia coli, and 218
active antibacterial compounds and 100 inactive compounds,
respectively. They measured the enzymatic activity of 12 essential
proteins which were treated with each antibacterial compound to
benchmark the performance of the model. This research suggests
that advanced approaches in modeling protein–ligand interac-
tions, especially utilizing methods based on machine learning, are
needed to better leverage AF2 for mechanism of action studies as
well as drug discovery.
Lactate oxidation with NAD+ as electron acceptor154 is a highly

endergonic reaction. Some anaerobic bacteria conquer the
energetic barrier through electron bifurcation/confurcation
(FBEB/FBEC) based on flavin utilizing a lactate dehydrogenase
(Ldh) combining with EtfA and EtfB, which are the electron-
transferring proteins. However, the mechanism of action is poor
understood. In a recent study, Kayastha et al.155 utilized AF2
calculations and obtained a plausible new B (bifurcation-
connected) state, which allows electron to transmit between the
shuttle FADs and EtfAB base. Based on the findings, they put
forward an integrated catalytic mechanism of the FBEC process.
Post-transcriptional RNA editing regulates the expression of

gene in a condition-dependent manner, which mechanism
remains unclear. In a recent study, Kimura et al.156 characterized
the C-to-Ψ editing mechanisms. They showed that TrcP mediates
the stepwise editing of C-to-U followed by the conversion of U to
Ψ. The structure modeling based on AF2 revealed a distinct long
helical domain within TrcP which possibly binds and orients the
substrate tRNA during both reactions, The findings suggest that
TrcP mediated C-to-Ψ editing depends on a substrate channeling
mechanism. These discoveries offer mechanistic views into an RNA
editing process which could possibly stimulate environmental
adaptation.
Liang et al.157 explored the substrate determinants and

recognition mechanism of separase, which is a giant cysteine
protease. In budding yeast, they identified a conserved motif
downstream of the cleavage site. Using AF2 and molecular
dynamics simulations, they discovered that in a conserved cleft
near the binding groove of separase’s inhibitor securin, the motif
is recognized by separase. The binding is mutually exclusive and
requires separase’s conformation changes. Their research could let
scientists get a deeper understanding of mechanism of substrate
recognition and activation of separase.
Lorenz et al.158 applied AF2 to predict the structure of selected

KRAB159 domains. They discovered an evolutionary conserved
L-shaped body of two α-helices in all the domains of KRAB. It is
changed into a typical spatial arrangement especially for mKRAB-
AB after the replacement of amino acid and together with a third
helix provided by mKRAB-B. This provides basic insights of how
KRAB form complex with TRIM28. McMullen et al.160 found from
yeast that EKP-GCSF and GCSF exhibits similar binding to its
receptor GCSF-R. Similarly, to study the structural effects of
EKP161,162 on GCSF, they applied computational modeling using
AF2 in conjunction with molecular dynamics simulations. Compu-
tational modeling shows that EKP does not change the structural
behavior of GCSF, which demonstrates that EKP does not hinder
receptor binding. Furthermore, the initial conformation of EKP-

GCSF from AF2 shows that the EKP which is around GCSF might
provide evidence of the thermal-protectivity of EKP on GCSF.
There are also other studies pertaining to biological mechanism

of action.163–176

Other applications. In addition to the application areas men-
tioned above, AF2 prediction could also be applied to some other
fields, such as protein evolution,177–180 rare disease treatment
studies,181 effects of mutation on treatment,182–187 vaccine
design,188–190 and so on. For example, Tang et al.180 investigated
the relationship between organism evolution and protein evolu-
tion based on the structures of proteomes from 48 organisms
predicted by AF2. They found some interesting phenomena,
including: (1) constituent proteins of organisms with higher
complexity would have larger gyration radii, higher coil fractions
as well as slower vibrations, and (2) higher degree of functional
specialization of proteins is associated with higher degree of
organismal complexity. This research brings new views about how
the proteins’ functionality diversity increases, and how the
dimensionality of the manifold of protein dynamics decreases in
the process of evolution. Sebastiano et al.181 found that protein
structures predicted by AF2 have a potential to assist rare disease
treatment studies. In this investigation, the authors focused on
Alsin, a protein responsible for rare motor neuron diseases. With
the AF2 predicted protein structures, they evaluated the flexibility
profile of Alsin and its mutants, and models of dimeric/tetrameric
Alsin responsible for its physiological action. They concluded that
efforts of drug discovery targeting Alsin-involving diseases should
be pursued. Yang et al.184 applied AF2 to predict the S, N, and M
proteins’ structures of the Omicron variant of SARS-CoV-2. They
analyzed how the S protein and its parts, S1 RBD and NTD, have
been affected by the mutations in detail, and also how the current
SARS-CoV-2 vaccines and treatments would be affected by these
mutations. Zeng et al.188 utilized AF2 to design a hemagglutinin
stem vaccine “B60-Stem-8070”. This vaccine showed better
performance compared with the original hemagglutinin stem
antigen.

Limitations of current AF2 prediction
The invention of AF2 is a game-changer event in structural
biology. It has reformed the field of protein structure prediction by
utilizing sequence information to model protein folds quickly with
atomic-level accuracy. However, current AF2 was trained on
protein structures from the Protein Data Bank in which X-ray
crystallographic structures dominate. Therefore, it is best con-
sidered as a predictor of the structured state under experimental
conditions where a protein is likely to crystallize, other than a
predictor of the lowest free-energy state under physiological
conditions. This together with some inherent limitations in
methods and techniques limits applications of AF2 predictions
in many aspects, which are summarized as follows.

The protein dynamics. Protein dynamics is a very important
research area.191–197 The protein structure predicted by AF2 is a
static state. However, proteins are very dynamic with multiple
states. Many important physiological and pathological proteins
(such as ion channel proteins) have very subtle conformational
changes under different active states, and will also show ever-
changing spatial configurations due to their combination with
various other proteins inside and outside the cell. At this point,
AF2 often gives a single optimal solution, which is difficult to
cover the conformational diversity of proteins. However, this
does not mean that it is not possible to understand protein
dynamics with AF2. According to several recent studies,198–201

AF2 can still be used for some analysis of protein dynamics. For
example, Del Alamo et al.199 recently presented a method to
drive AF2 for sampling alternative conformations of topologi-
cally diverse transporters as well as the G-protein-coupled
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receptors that do not exist in the training dat set of AF2.
Nevertheless, the exploration of the conformational space is in
part a by-product of low sequence information which is
provided for inference.
There are also other studies pointing out that AF2’s weak

performance in identifying conformational ambiguity.202 Addi-
tionally, AF2 could hardly be used for the structure prediction of
a protein with multiple domains, such as a transmembrane
receptor with a large extracellular domain.203 There is still a
demand of new deep learning methods to be designed for the
prediction of ensembles of biophysically correlated states.

Structures for disordered regions of proteins. The AF2 database
consists of highly accurate predictions for the folded part of a
large number of proteins. Nevertheless, AF2 does not well in
predicting structures of proteins, in cases fewer sequences are
available for alignment, and regions that are natively unfolded or
disordered regions, for example, loops. The loop structures are
relatively stable in crystals, but are very flexible in solutions.
Although many approaches have been tried,204–207 it is difficult for
existing methods to predict the morphology, dynamics and
interactions of disordered regions of proteins in solutions.

Structures of proteins in complex with small molecules or other
proteins. It has been well known that small molecule ligands or
proteins may induce a protein to undergo conformational
changes. The most representative example is allosteric modula-
tors,208 which refers to small molecules or peptides that bind to a
site of an enzyme protein different from its endogenous ligand
binding site to cause conformational changes, thereby changing
the activity of the enzyme. Besides allosteric modulators, plenty of
orthosteric ligands, which bind to the identical site as the
endogenous ligand, can also induce conformational changes.
Nevertheless, AF2 is not designed to determine how proteins
change their shape in the presence of other interacting ligands or
proteins.

Structures of proteins with point mutations. Point mutations are
frequently encountered in proteins, particularly pathological state.
Understanding the effect of missense mutations on protein
structure may help unveil their biological or pathological
mechanism. Even though AF2 could predict wild-type (WT)
structures, it likely performs poorly in predicting the effect of
missense mutations on the proteins’ 3D structures. Although there
are researches showing that AF2 could predict the phenotypic
effect of missense mutations,209,210 it was also observed that the
performance of missense mutations prediction is not good in
other studies,211 and there were only weak or no correlations
between the output metrics of AF2 and changes in protein
stability or functionality.212

Structures of proteins with post-translational modifications. Post-
translational modifications,213–215 such as phosphorylation,216

methylation,217 acetylation,218 and glycosylation,219 are common
in proteins. These post-translational modifications may lead to
conformational changes in protein structures.220 For example,
phosphorylation of inactive kinases in their active loop often
results in a large conformational change, and eventually activate
the kinases. However, AF2 can predict protein structures only
based on their amino acid sequence, and post-translational
modifications of residues cannot be recognized. Therefore, the
conformational changes due to post-translational modifications
cannot be predicted with current AF2.

Prediction of orphan proteins and artificially designed proteins. In
addition to the above-mentioned limitations, AF2 and other
computational systems that use DL and the information of co-
evolutionary relationships encoded in MSAs also face challenges

in prediction of orphan proteins and artificially designed proteins
because an MSA cannot be generated. Recently Chowdhury
et al.51 developed an end-to-end deep neural network model,
namely differentiable recurrent geometric network (RGN) model,
in which a protein language model (AminoBERT) based on the
Bidirectional Encoder Representations from Transformers
(BERT)221 was used to learn latent structural information from
unaligned proteins. Language models were firstly introduced to
extract semantic information from words. The RGN model showed
better performance on orphan proteins than AF2, while signifi-
cantly reducing the computing time by up to 106-folds. These
results demonstrate the theoretical and practical strengths of
protein language models in structure prediction compared
with MSAs.

Limitations in methods and techniques. We finally have to
mention that AF2 itself has some limitations in methods and
techniques. For example, (i) deep learning models have low
interpretability currently; (ii) the AF2 structural prediction is
based on the data of MSA, i.e., a large number of evolutionarily
related sequences is needed for the structure predictions,
which might cause side effects such as comparably slower
prediction speed. As a comparison, language models (such as
ESMfold49 and RGN50) enable end-to-end protein structure
prediction directly from amino acid sequences with high speed
and accuracy.

CONCLUDING REMARKS
The excellent performance of AF2 in predicting protein
structure together with the release of structures of more than
200 million proteins predicted by AF2 is reshaping structural
biology. AF2 will certainly have a significant impact on
researches that need protein structure information, and could
be applied in many fields such as drug discovery, protein
design, target prediction, protein function prediction, PPI,
biological mechanism of action, and others, in addition to
experimental structural biology. Despite just a very short time
since AF2 was developed, we have already witnessed a number
of successful applications. We believe that, as time goes on,
more applications or new application fields will be developed,
for example, design of protein machines with complex or
specific functions, design of new organisms, and disease
diagnosis. Even so, AF2 prediction is not a panacea and there
are many issues still needing to be solved, including protein
dynamics, structures of disordered regions of proteins, struc-
tures of mutants, structures of protein-ligand complexes,
structures of proteins with post-translational modifications,
and so on. With the further development of AI algorithm,
ever-increasing data, and computing power, it is expected that
more surprises will surely come to us in future.
Finally, it is necessary to mention that, during the revision of

this article, the new CASP competition, CASP15, is over.
Different from previous CASPs, which took protein structure
prediction as the main track, CASP 15 also paid attention to
predicting protein complex and RNA structures. This is
consistent with the CASP’s style or philosophy that keeping
pace with the times, which means that protein complex
structures and RNA structures might be the new focuses in
the “post AlphaFold era”. Another noteworthy point is that
DeepMind did not take part in CASP15, which reasons are
unclear. Nevertheless, all teams that have achieved better
results have more or less used AF2 algorithms or AF2 predicted
structures, which implies that AF2 invisibly won CASP15 again,
further highlighting the great influence of AF2 in structural
biology. Overall, we look forward to new breakthroughs of AI in
structural biology, and more application achievements by using
AF2 in the future.
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